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The flow of a compressible fluid with weak entropy 
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SUMMARY 
Perturbations of a given flow are considered, and the equations 

which govern the one-dimensional, non-steady flow of an inviscid, 
ideal compressible gas are linearized in the neighbourhood of this 
known solution, assumed isentropic, by a formal perturbation 
expansion. The perturbed flow is not assumed isentropic. 
Explicit solutions are obtained for a basic flow which is uniform 
or a centred simple wave and for an arbitrary simple wave if 
the perturbed flow is isentropic. 

The perturbation of a uniform shock and perturbations in a 
shock tube lead to functional equations of a particular type, and 
a discussion of their solution is given. 

A similar analysis is used to  discuss the flow in a tube of slowly 
varying cross-section. 

1. INTRODUCTION 
The one-dimensional, non-steady flow of an inviscid compressible gas 

which, furthermore, is assumed to be ideal and polytropic with constant 
specific heats is governed by a system of non-linear, first-order partial 
differential equations which is always hyperbolic. Given an isentropic 
flow, a solution of the governing equations, this paper will discuss 
'perturbations' of this basic flow; i.e. this flow is disturbed by some 
means, and it is desired to  find the resultant flow. 

To linearize in the neighbourhood of this known solution, the dependent 
variables are formally expanded as functions of a small parameter 6, viz. 

u(x, t )  = uo(x, t )  + 6u,(x, t )  + 62u2(x, t )  + ..., 
c(x, t )  = co(x, t )  + 6c,(x, t )  + 6"c2(x, t )  + ... , 
s(x, t )  = so + as&, t )  + 62s,(x, t )  + ..., 

where u, c and s are respectively the particle velocity, the local speed of 
sound and the specific entropy, and the zero subscript denotes the basic 
(known) flow. When these expansions are substituted into the governing 
equations and grouped with respect to increasing powers of 6, the terms 
free of 6 are satisfied identically, so that the resulting equations may be 
divided through by 6 and, taking the limit as 6 -+ 0, the equations governing 
the first approximation to the behaviour of the disturbed flow are obtained. 

F.M. 2 N  
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These equations are linear with the same characteristic surfaces as the 
original system and form a system of non-homogeneous first-order partial 
differential equations. I t  is convenient to attack the problem by first 
considering the associated homogeneous system, which has the physical 
significance that, to the order of terms retained (i.e. to the order of a), the 
perturbed flow is still isentropic. The problem is consequently reduced 
to the determination of a particular solution of the non-homogeneous 
equations. Since the equations for the perturbations are linear, super- 
position of flows is possible. 

Explicit solutions are obtained for a basic flow which is uniform or a 
centred simple wave, and for an arbitrary simple wave if the perturbed 
flow is isentropic. The application of these results to the perturbation of 
a uniform shock and perturbations in a shock tube lead to functional 
equations of a particular type, and a discussion of their solution is given in 
Appendices I and 11. The flow in a long tube whose cross-section is 
made to undergo a small variation with x is treated by a similar analysis 
in part 111. 

Many authors have discussed the application of perturbation techniques 
to gas-dynamical problems, but, in general, have linearized in the neighbour- 
hood of a constant state, with the result that the characteristics are rectilinear 
and parallel. For many flows, these characteristics are inadequate, and a 
more exact treatment of the characteristics is necessary. In the present 
paper, the question of correcting characteristics is not met, for the exact 
characteristics of the initial flow are always employed. A summary of 
32, $ 3  and $5  has already been given by Germain & Gundersen (1955). 

PART I. GENERAL THEORY 

2. THE BASIC EQUATIONS AND SOLUTION FOR AN ORIGINALLY UNIFORM FLOW 

The equation of state is 

and the equations which characterize the one-dimensional non-steady flow 
are 

c, + uc, + t ( y  - l)cu, = 0, 

u, + uu, + 2ccx/(y - 1) - c2sx/c, y(y - 1) = 0, 

s, +us, = 0, 

where P is the pressure, p the density, s* the specific entropy at some 
reference state, y the ratio of the specific heats at constant pressure cl, 
and at constant volume c,,, and the subscripts denote partial derivatives. 

Throughout, it is assumed that an isentropic solution is known, namely, 
uo(x, t) ,  co(x, t) ,  so = constant. A formal linearization in the neighbourhood 
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of this known solution gives the following equations which govern the first 
approximation to the behaviour of the disturbed flow: 

C l t  + uo CIS + &(y - 1)co 241, + u1 co, + &(y - l)uox c1 = 0, (2.1) 

3(y - I)u,t + &(y - 1)uo u1, + co Cla + $(y - 1)uos u1 + c1 coz = c; SlZ/2C, y ,  (2.2) 

S l t  + uo S I X  = 0. (2.3) 
These equations are linear with the same characteristic surfaces as the 
original system. 

According to (2.3), s1 remains constant along the particle paths of the 
given flow, i.e. along dx/dt = uo. Also, po(dx-u0dt) is the exact differential 
of a function &, which, when equated to a constant, defines the particle 
paths. 

s1 = 4+0), (2.4) 

It is convenient to define a new function 

Consequently, the solution of (2.3) is 

with w an arbitrary function. 
Ho(x, t )  by 

4 Sl.2 = Po 4 w’(ICl0) = Y(Y - 1)CU Ho. (2.5) 

Therefore, the two equations which serve to determine ul, el are 

clt + uo cis + &(y - l)c, ~1, + ~1 co, + 4(y - l)uoa c1= 0, (2.6)’ 

(2.7) ult + uo ulS + 2(y - 1)-‘~o ~1~ + uoS u1+ 2(y - 1 ) - ’ ~ 0 ~  ~1 = Ho. 

It  is convenient to  introduce the characteristic parameters of the basic 
flow 

and the functions 
tu, + co/(y - 1) = a, - 8% + co/(y - 1) = p, 

$ul+ cl/(y - 1) = A, - iul  + c ~ / ( Y  - 1) = B. 

The combinations (2.6)/(y - 1) 4 b(2.7) give 

At + ( u g  + co)A, + 3[14(y + 1) + (y - 3)B]., = 4H0, (2.8) 

B t + ( u o - ~ o ) B , + ~ [ A ( 3 - y ) - ( y +  l)B]pz = -&f€o. (2.9). 

A perturbation in which the perturbed flow is still isentropic corresponds 
to a solution of the homogeneous (Ho = 0) system associated with the 
linear system (2.8) and (2.9). 

For the case of an initially uniform flow, uo and co are constants, and 
therefore a ,  = p, = 0. The homogeneous system then admits the following 
general solution, in terms of two arbitrary functions F and G of one argument 

A = F [ x - ( u O + ~ o ) t ] ,  B = G [ x - ( u ~ - c ~ ) ~ ] .  (2.10) 

In the non-isentropic case, from (2.4) and (2.5), Ho is a function of 
x - uo t ,  and 

where x is an arbitrary function, is a particular solution for which u1 = 0 ; 
i.e. the addition of an entropy perturbation affects cl(x, t )  but not ul(x, t ) -  

Ho = ~ x ’ ( x  - ~0 t ) ,  c0 A = COB = X(X - uo t ) ,  (2.11). 

2 N 2  
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3. PERTURBATION OF A SIMPLE WAVE : GENERAL THEORY 

For the case of the simple wave, one of the characteristic parameters 
.of the basic flow remains constant, e.g. /3 = Po. B is then determined 
from (2.9) and A from (2.8). The solution for the perturbation of an 
.arbitrary simple wave will be given but, first, the centred simple wave 
will be discussed in some detail. 

The wave is assumed to be centred at the origin and characterized by 
j3 = Po. 

therefore 

From the definition of the characteristic parameters, 

uo = a-po, Lo = Hy-l)(a+/30); 

Substituting these results into (2.8) and (2.9) specialized to the case 
of an isentropic perturbed flow, the following equations are obtained : 

rA,+xA,+ A+-B = 0, [ k+: ] 
tBt+ [$ x - 4 5  Po t ] B ,  = 0. 

B will be determined first by solving (3.2), and, after this result has been 
substituted into (3.1), A may easily be determined. The characteristics 
.of (3.2) may be written as 

(3.3) _ -  dt - (Y + 1)dx 
t 

and d B  = 0. It follows from (3.3) that 
(3 - Y)x-4(Y - 1)Pot 

t = K1(x + 2po t)@+1)/(3+) 

with Kl a constant; and since 

the representation of the curvilinear characteristics of the simple wave is 
t = K2(co t)W+l)I(W 

with K ,  a constant, or 

This form is not classical, but will be seen to be 
If F is an arbitrary differentiable function, it is 

solution of (3.2) as 

Consequently, the solution of (3.1) is 

po c, t2 = const. 

B = 2(po c~)'& F(p0 c0 t2). 

(3.4) 
a very convenient one. 
convenient to write the 

(3.5) 

-where G is an arbitrary function. 
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The particle paths are given by pocot = const., or 
y c2 tZ(Y-l)/(Y+1) = const. 

0 
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For the non-isentropic case, it is convenient to write 

w o  = (2CO/t)4Y).  
The following particular integral (to be added to the previous solution) is. 
easilv obtained : 

1.e. 

with w1 an arbitrary function and, as in the perturbation of a constant state, 
the addition of the entropy perturbation affects cl(x, t )  but not ul(x, t ) .  
This question will be taken up in detail after the arbitrary simple wave 
has been discussed. 

For the arbitrary simple wave (isentropic perturbed flow), let xo(z), 
to(%) be the parametric representation of a curvilinear characteristic of the 
given flow. 

u1 = 0, c1 = i ( Y + l ) ( c o / Y ) 4 Y ) ,  

The wave may be represented by 

x = xo(z) + [uo(z) + co(Z)]T,  t = to(x) + 7,  (3.7) 
(3 .8)  

(3.9) 

- &0(4 + co(z)/(r - 1 )  = Po. 

I31 + (uO - cO)B, = 0, 
Equation (2.9) reduces to 

i.e. B is constant along any curvilinear characteristic. 
of (3.9) are dB = 0 and dx = (uo-co) dt ,  or, from (3.7),  

The characteristics 

hence, as (xo, to) is a curvilinear characteristic, the following differential 

or, utilizing (3.8), 
l y + l l d c ,  = -  1 dT _- 

T d z  2 ~ -  1 CO d z  * 

This has the solution 

po co T~ = const., or po co(t - to)' = const. 

This result for the representation of the curvilinear characteristics of 
the simple wave could have been written down immediately by analogy 
with (3.4). 

B = 2(po co)'/'(t - to)F'[po co(t - to)'] (3.10) 
in terms of an arbitrary, differentiable function F. The characteristics 
of (2.8) may be written as 

The solution for B is 

(3.11) 
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The integral of the first equation of (3.11) has the first family of character- 
istics (rectilinear characteristics) for level curves. Let this first integral be 

z (x ,  t )  = const. (3.12) 

'This function is given implicitly by 

From the definition of the characteristic parameters, it follows that 
x - xo(4  = [uo(z) + co(41 Ilt - t o ( 4 l .  

u = 2 ( ~  + l)-l[u, + CO - &(r - 3)]/$. 
Substitution in (3.1 1 )  yields the following differential equation for A : 

2co(dto/dz) y - 1 d A  3 -  
y + l B *  

t - to -  [ (dc,/dx) m] dt = 

'To integrate this equation, B is substituted from (3.10) and the first integral 
(3.12) is employed, i.e. z may be considered as constant. This yields 
another first integral, and the solution for A(t, z )  is 

in terms of the arbitrary functions F and G. In the non-isentropic case, 
the problem is reduced to two ordinary differential equations, but it does 
not seem possible to solve these two equations explicitly in the general 
case. The question of actually determining these arbitrary functions in a 
specific problem will be discussed later. 

4. CRITERION FOR THE EXISTENCE OF A PARTICULAR SOLUTION ul= 0 IN THE 

In the non-isentropic perturbation of a constant state and of a centred 
simple wave, the addition of the entropy perturbation just affects the sound 
speed, whereas the particle velocity is the same for isentropic and non- 
isentropic perturbed flows, i.e. there exists a particular solution ul = 0. 
Unfortunately, such a nice result does not obtain for the arbitrary simple 
wave. It is of interest to determine under what conditions such a result 
is to be expected, for the answer is not at all obvious. 

I t  is equivalent to look for a solution of (2.6) and (2.7) with u1 = 0, viz. 

NON-ISENTROPIC CASE 

C l t  + U o  C l X  + Q(r - l)%lz c1 = 0, (4.1) 

(44 (c1 CO), = (Po  C W v Y ) W ' ( # o ) ,  

d#o = po(dx - U O  dt).  
'Thus, it is clear that the problem consists of expressing the compatibility 
of equations (4.1) and (4.2), and the corresponding identities will determine 
which functions uo(x, t),  co(x, t )  allow this compatibility. 

The characteristics of (4.1) are 
dx 2dc, & = - =  - 
uo (Y - 1)Uoz C I S  
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From the first two ratios, a first integral is 

A second one will be found easily since co(x,t)  is a particular solution 
of (4.1). This first integral is cl/co = const. Hence, the solution of (4.1) is 

dx - uo dt = 0, or +o = const. 

where f is an arbitrary function. Substitution of (4.3) into (4.2) gives 

Hence, the necessary and sufficient conditions for the existence of a 
particular solution u1 = 0 is 

By taking the material derivative, this condition becomes 
Zl0,, = 0. 

Consequently, in order to have a particular solution with u1 = 0, it is 
necessary and sujicient that uo(x, t )  is a linear function of x.  Then c1 = co f ( + J  
with a convenient function f. It is necessary to investigate all solutions of 
this form, i.e. uo = a( t )x+b( t ) .  This has been carried out but will not be 
included here. 

5. AN APPROXIMATION FOR FLOWS WHICH DIFFER ONLY SLIGHTLY FROM 

In general, it does not seem possible to solve (2.8) and (2.9) explicitly 
for an arbitrary initial flow. However, the preceding techniques may be 
utilized if the given flow does not differ greatly from a uniform state or a 
simple wave. 

For example, consider the problem of a flow, which is nearly a uniform 
flow (uo, c,,). Denote by ul,  cl, s1 and u2, cp,  s2 the terms of first and second 
order obtained by a formal perturbation method. 

do = uo+ul, E = co+c1+c2, E ,  = co+cl, c = U 0 + U 1 + U 2 ,  s =  s1+s2. 

By termwise addition of the equations determining ul, cl, s1 and u2, c2, s2 
and neglecting terms of third order (e.g. u1 c2, u2 cl), the following equations 
are obtained : 

A UNIFORM STATE 

Let 

E, + Go E ,  + q(y - l )Eo G, = 0, 

s, + uo s, = 0. 

1 

1 
c, + Go 6, + 2(y -- l)-’Eo E,  = E,2FX/Y(Y - l)cv, 1 (5.1) 

Formally, this system of equations is identical to (2.1), (2.2) and (2.3) if 
the terms uox and cor are neglected. Consequently, the following principle 
has been established. If Go and E ,  define theflow to the second order, zi and E 
define the flow to the third order. 

The solution of the system (5.1) is immediate. With the introduction 
of the quantities A,  B, M and 8, the system may be written as 
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and may be solved by quadratures. In  the isentropic case, A = F(u), 
B = G(/3) where F and G are two arbitrary functions. Thus, it is clear 
that the analysis is exactly that which is met in the classical theory (the 
Euler-Poisson equation). 

Note that the neglect of the terms u,, and c,, does not affect the 
principal part of each differential equation, so that the characteristics 
remain unchanged. 

6. ISENTROPIC PERTURBATION OF AN ARBITRARY SIMPLE WAVE : 

In  $ 3 ,  the perturbation of a simple wave was solved in terms of two 
arbitrary functions. The present and subsequent section are devoted to the 
question of the determination of these arbitrary functions. It will be shown 
that, at least theoretically, no difficulties are met. 

DETERMINATION OF ARBITRARY FUNCTIONS 

v 

Figure 1. 

Consider a tube of gas, initially at rest with constant sound speed cR 
and constant density pR, from which a piston, originally at rest, is withdrawn 
with increasing speed until a constant final velocity is attained. A simple 
wave, which advances with the speed cR into the gas at rest, is generated. 
The (x,t)-representation of the flow is shown in figure 1. The region 
x > c R t ,  denoted in figure 1 by the symbol R, is a constant state with 
(u,c) = ( 0 , ~ ~ ) .  The flow due to the receding motion of the piston is 
restricted to the region x < c,t,  and the region denoted by 0 is a simple 
wave. As the piston attains its final velocity, the flow becomes a constant 
state, denoted by the symbol 2, with particle velocity equal to the piston 
velocity. This is a classical problem, and the solution is well known. 
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I t  is now assumed that a small perturbation takes place and that the 
resultant flow is still isentropic. This problem was solved in $ 3  in terms 
of two arbitrary functions. The discussion of this section will be in rather 
general terms without concern for computational details, for it is the basic 
principles, and not the details, which are important here ; they will provide 
the basis for the solution of the perturbation of the centred simple wave. 

Let the following initial conditions be given for t = 0: 

u = Sg(x),  c = c,+6h(x), 
where g and h are known functions. 

is 

where 

and perturbations are denoted by a bar. Also, let the piston velocity be 

From the perturbation of a constant state ($ Z), the solution for x 2 cR t 

cfi = v(”- CR t )  - f ( x  + c, t),  z(y-- l)-’ZR = q(x- CR t )  + f ( x  + cl{ t ) ,  

q(x) = M x )  + W l ( r  - 11, f(‘4 = - M.) + h(x)/(r - I), 

u = 3i. = X(t )+ SX(t). 

The rectilinear characteristics of the simple wave are given by z = const., 
and the curvilinear cross-characteristics by 

Po co(t - = a, 

where a is a constant. Recall that [xo(z), tO(x)]  is the parametric repre- 
sentation of a non-linear characteristic of the given simple wave. 

The function x was defined implicitly, and it is assumed that this relation 
has been inverted to give z(x, t). This value is substituted into po(z), etc., 
which gives functions which will be denoted by pol(x,t), etc. These are 
substituted into (3.10) and (3.13), and the resultant functions are called 
B = B,(x, t ) ,  A = A,(x, t),  G(x) = Gl(x, t )  and Fl. 

The perturbations introduced at t = 0 travel along the characteristics 
in region R to the first characteristic of the simple wave, viz. x = c R t .  
At a point (x,, t l )  = (cRtl ,  t,) of this characteristic, the perturbations are 

This perturbation ( G i ,  2;) travels along the non-linear characteristic 
Let the equation of this 

4% tl) = d o ) ,  B,(% tl) = 5(2c, tl). (6.1) 

through the point (xl,t,) to the piston curve. 
non-linear characteristic be 

Po1 COl(t - t0d2 = a19 ( 6 . 4  
and let the intersection of (6.2) with the piston path, x = X( t ) ,  -be (xl, ti). 
The conditions (6.1) on x = cR t allow the determination of F,  from 

Z(P0l Col)l’z(t - to1)~;Gool  co4t - t01)21 = tl). (6.3) 
Thus F,, and therefore B,, is known throughout the simple wave region. 

In  general, c0 = A,-B,; therefore, at the point (%:,ti) of the piston 
curve, we have 

X,(t:)  = A~(x: ,  t i )  - B ~ ( x : ,  ti). (6.4) 
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Now let 

As the first and last terms in (6.4) are known, this gives a condition for the 
determination of G,(x$, ti) : 

Gl(x:, t i )  = Di[*l(t:) +&(xi, ti)] + 

Clearly, this analysis applies at each point of the first characteristic of the 
simple wave, i.e. at each point the perturbation travels along the non-linear 
characteristic through the point to the piston curve. Consequently, (6.5) 
holds, with appropriate changes in the arguments, all along the portion 
of the piston curve in the simple wave region and allows the determination 
of G,(x,t). From classical theory, this is a well-set problem (in Picard’s 
terminology, a third problem) as the value of B, is known along the 
characteristic x = cR t and the value of A, is known along the piston curve 
which has time-like orientation. 

The function G, determines the perturbations which travel along the 
rectilinear characteristics of the simple wave. The perturbed flow in 
region 2 is determined by data along the last characteristic of the simple 
wave and on the rectilinear portion of the piston curve. 

7. ISENTROPIC PERTURBATION OF A CENTRED SIMPLE WAVE 

Consider the same original situation as in (I 6, but suppose now that the 
acceleration of the piston from rest to a constant terminal velocity u, = - V 
(V > 0) takes place instantaneously. The rectilinear characteristics of the 
rarefaction wave, generated by this piston motion, all pass through the 
origin as depicted in figure 2. 

Figure 2. 

On this known initial flow, the following initial conditions for the 
perturbed flow are superposed: go = 0, t = 0 ;  Zo = ( y -  l)f(x), x > 0 ;  
Eo(O, 0) = 0; Eo(O, 0) = ( y -  l)f(O). The analysis of 96 will be used to 
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The subsequent analysis 

The utilization of the solution for the perturbation of a constant state 

determine the solution of the present problem. 
-will also give information about the value of Co(O, 0). 

.and initial conditions gives 

A = f ( x - ~ R t ) ,  B = f ( x + ~ R t ) .  ( 7 4  
‘The application of (7.1) on x = c, t and substitution in (3 .5)  and (3.6) gives 

f(2c, t )  = 2(p, CR)1’2t F’(p, c, t 2 ) .  

In the limit as t + 0, 

f(0) = 0, J 
where it is assumed that f is continuous and that F is bounded near t = 0. 
This last statement implies that the perturbations are bounded near t = 0. 

Equation (7.2) says that, for the present problem, it is necessary that 
1?~(0,0) = 0, i.e. both perturbation velocities must vanish at the origin 
where the basic flow is discontinuous. 

The present problem is clearly a limiting case of the problem of 36. 
The G-function, a function of xlt, determines the perturbations which 
travel along the rectilinear characteristics of the simple wave. It is 
determined by the perturbations carried to the piston curve along the 
curvilinear cross-characteristics of the simple wave. In the limit as the 
rectilinear characteristics form a pencil of lines through the origin, the 
G-function will be determined by the perturbations at the origin only. 
As the perturbations are zero at the origin, it is clear that G is at most a 
constant, and this constant will be chosen as zero for convenience. 

It is easily found that 

The solution in the simple wave is now known, and the perturbed flow 
in region 1 is determined by conditions along the last characteristic of the 
simple wave and along the piston. 

PART 11. APPLICATIONS 
As a first application, the perturbation of a shock produced by a uniform 

compressive motion of a piston will be considered. A piston, initially at 
rest, is at t = 0 suddenly pushed with constant velocity into a gas which 
is also initially at rest. A uniform shock is produced, which moves with 
constant velocity into the gas, and the gas behind the shock is in a steady 
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state with gas velocity equal to  the piston velocity. The state of rest in. 
front of the shock is denoted by R, and the constant state behind the shock 
is denoted by 0. The shock velocity is given by 

Wo = $(y + l)u0 + [c: + ((7 $. 1 ) ~ 0 / 4 ) ~ ] ~ / ~ .  
Suppose that the piston is given a small prescribed perturbation for t 2 t,. 
This will perturb the shock locus, and, as this is the perturbation of a strong 
shock, the flow behind the shock will no longer be isentropic; thus the 
entropy perturbations must be considered. It is convenient to solve this 
problem in two steps. First, the inverse problem of the determination 
of the perturbed piston path when the shock is given a small perturbation 
is solved, and, second, this solution is used to solve the direct problem. 

8. THE INVERSE PROBLERZ 

Suppose that, from some particular time t,, the shock is given a small 
prescribed perturbation ; i.e. let the shock velocity be W = Wo for t < t ,  
and W = Wo+€(t) for t >, t,, where ~ ( t )  is a known function sufficiently 
small so that terms of higher order than the first may be neglected. This 
perturbation will cause a corresponding perturbation of the particle velocity ; 
let the new particle velocity near the shock be u = u o + ~ ( t ) ,  where ~ ( t )  i s  
also small and must be a function of ~ ( t )  as will be shown. 

The perturbations of uo, c, and so, which will be denoted by Go, Zo and So, 
will be found in terms of ~ ( t )  along the shock. With these boundary 
conditions, the solution for the non-isentropic perturbation of a constant 
state may be utilized to find the perturbed flow behind the shock. Then, 
zio(uo t ,  t )  gives the perturbation of the piston velocity. 

It is convenient to tabulate many of the standard relations between 
the flow parameters in perturbation form. Appendix I11 contains some 
of the more important relations. 

By the use of the Prandtl relation in perturbation form (Appendix 111, 
relation VIII), it follows that 

where 
Co = 2K,€(t), to = ( y -  l)K,E(t), 

K~ = 4[2(1 - e - u o / ~ o l ,  K,  = 2(y+ i ~ - ~ ~ ~ ~ - ~ , ~ ~ ~ ~ + u ~ ~ z ~ ~ ~ , ,  

0 = (Y - 1)Kr + 1). 
Consequently, 

on the shock. 

A = (K,+K&(t) K 3 ~ ( t ) ,  B = (K2-Kl)€(t)  ~2 K4€( t )  (8.1) 

From relation V of Appendix 111, 

and from relation I of Appendix 111, 
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I n  general, from (2.11) and (2.5), 

which implies, from (8.2), that 
F0 = 2cvy(y - l)c,-Zx(x- uo t )  

throughout region 0. 
By the use of the general solution for the perturbation of a constant 

state and the conditions (8.1) and (8.3), and applying the boundary conditions 
.on the unperturbed shock locus", the following solution is obtained : 

Hence 

is the particle velocity perturbation throughout region 0, and, in particular 
its value on the piston path is obtained by setting x = uot in (8.4). The 
perturbed piston and shock paths are obtained by simple integration. 

Figure 3. 

It is not immediately obvious how the characteristics should be oriented. 
However, in figure 3, consider an arbitrary point on the piston curve 

* The error thus introduced is of the order of the neglected terms and therefore 
neglible, viz. if the original shock locus is x = W,, t, the new shock locus is 
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(e.g. t"), and let t- be the intersection of the shock locus and the character- 
istic with slope uo-c, through this point. The characteristic with slope 
uo + c, through t" intersects the shock locus in a point which will be denoted 
by t,. These points are given by 

Consequently, from (8.4) with x = uot, it is seen that a perturbation at a 
particular point of the piston curve is determined by the perturbation at 
two points of the shock curve with the depicted orientation. Hence, the 
(x,t)-representation is as in figure 4. The region in which the flow is 
perturbed is cross-hatched. The relation between t ,  and t ,  is 

t ,  = co t"/(u, + c, - W,), t- = c, t"/(c, - uo + W,). 

t z  = c, tl/(uo + c, - W,). 

Figure 4. 

9. DIRECT PROBLEM 

From the solution of the inverse problem, the solution of the direct 
problem is easily obtained, and the solution is given by a uniformly 
convergent infinite series. Let ~ ( t )  be the prescribed perturbation of the 
piston velocity, and ~ ( t )  the perturbation of the shock velocity. From (8.4), 
we get 

= Rl€[ C o t  ] +Rpt[ u,+c,- w, 
c,-uo+ W, 

Figure 5 illustrates the scheme to be utilized. The lines drawn between 
the piston and shock paths are the characteristics, the odd-numbered lines 
having slope (u, + c,) and the even-numbered lines having slope (uo - co)- 
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Now, 7 evaluated at the point 1 is given in terms of multiples of E evaluated 
at the points 1' and 2'. q (2)  is given in terms of multiples of 4 2 ' )  and ~ ( 3 ' ) ,  
etc. E (  1') will be determined. Symbolically, take the first-mentioned 
relation (1, l', 2'), equation (9.2),  and for 2' substitute its equivalent from 
equation (9.3). By continuing this 
process, a relation of the form (1, 3, 5, 7, ..., n, l', [n+ I]') for n odd is 
obtained. By indefinite continuation of this process, a series representation 
is obtained for E in terms of multiples of 7 evaluated at the points K,  where 
K = 1, 3 ,  5, ... . The general term of this series is determined and proved 
by induction, and the convergence is established. 

This gives a relation (1, 3, l', 4'). 

at 

v 

Figure 5. . 

The coordinates of the point 1' are chosen to be (x, t )  = (W, t*, t"),. 
and the following notation will be employed : 

By induction, 
u,+c,--  w, = r ,  w - u , + c ,  = q, cot" = t,. 

17( 1) = Rl  E(rtl/Q2) + R2 4 , l r )  (9.2). 

~ ( 2 )  .= R, 
~ ( 3 )  = R, €(r3t1/q4) + R2 +,lq2) 

~ ( n )  = Rl ~ ( P t ~ / q ~ + l )  + R, c(rn-2fl/qn-1). 

E ( t l / Y )  = 71(1)/R2 - (R,/R2)4rt1/q2). 

4t l l7)  = .1(1)/R2 - (R1/R3rl(3)  + (R1/R2)2+3t,/q4). 

+ R2 WQ) 
(9 .3) .  

(9.4).  
. . . . . . . . . . . . . . .  

From (9.2), 

The last term is replaced by its equivalent from (9.3),  with the result 

For the first n terms, the series is 
?1 

E ( t l / Y )  = 2 ( -  l)"+1Rf-1R,"71(2K- 1) + (-  1)"(R,/Rz)"€(r2"-lt1/q2"). (9 .5)  
K = 1  

Mathematical induction is used to prove this assertion, which is certainly 
From (9.4),  it follows that true for K = 1. Assume it is true for K = n. 

~ ( r ~ ~ - - l t , / q ~ ~ )  = 4 2 n  + 1)/R2 - (R,/R2)e(r2n+1tl/q2n+2). (9.6): 
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Substitution of (9.6) into (9.5) gives 

3 

n + l  
e[tl/r) = 2 q(2K- 1)( - l)KflRf-lR;K + (- 1)n+1(R1/R2)n+1~(~2n+1fl/~2n+2). 

K = l  

(9.7) 

pl 

Therefore, the assumption that (9.5) is true for 71 implies it is true for n +  1. 
Hence, (9.5) is true for all n. 

Since it is assumed that all perturbations are small, the assumption is 
made that E and 9 are uniformly bounded. With this reasonable assumption 
and the easily-seen fact that Rl/R2 < 1, it is readily established that, as 
n +a, the series is uniformly convergent. Hence 

m 

~ ( t , / r )  = 2 ( -  l)K+lRf-lR, Kv(2K- 1). 
K = 1  

Functional equations of the type (9.1) are treated from a general point of 
view in Appendix I. 

Figure 6. 

On this basic flow, which is assumed to be completely known, a 
perturbation is imposed. The perturbation conditions are not assumed 
to be the same for the two portions of the fluid. In particular, the isentropic 
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character of the initial flow will not be retained for the region x > 0. Let 
these conditions be: for t = 0 and x > 0, u = Sg(x), c = c ,+Sh(x) ,  
s = s o + 6 f ( x ) ;  for t = 0 and x < 0, u = 8n(x) ,  c = cz +8m(x) ,  s = so. 
Here cl, cg and so are constants, andg, h, f, m and n are known functions. 
For continuity at x = 0, it is assumed that g(0) = n(O), h(0) = m(0) and 
f(0) = 0. The contact discontinuity is given by x = Kt. 

It  is not possible to solve independently for the perturbed flows on the 
two sides of the contact discontinuity. For the region x > 0, no difficulty 
is encountered in regions 1 and 3. The solution in 3 gives conditions on 
the last characteristic of the simple wave, but these are insufficient to 
determine the flow in region 5 .  However, if on the contact discontinuity 
ti6 is specified as f l ( t ) ,  which is not known, the flow in region 5 can be 
easily determined in terms of f , ( t ) .  For the region x < 0, the flow will 
be non-isentropic since the shock is perturbed. By expressing ti4, E4 and S4 
in terms of the shock velocity perturbation @, the flow in region 4 can be 
determined in terms of m, which is not known. 

Across the contact discontinuity, there is continuity of pressure and 
particle velocity, and it is easy to see that this implies continuity of the 
corresponding perturbations. This continuity condition yields two 
equations in f , ( t )  and m(t). By elimination of f l ( t  , a functional equation, 

has been 
determined, the solution of the problem is easily completed. 

In terms of ~ ( x )  and ((x), as defined in $6,  the solution in region 1 is 

treated in detail in Appendix 11, is obtained for d and, once 

Q, = q(x - c1 t )  - ((x + c1 t )  - c1 f ’ ( X  - c1 t )  + hpl cJ(x + c1 t) ,  
2 ( y  - 1)-1Z1 = r](x - c1 t )  + f ( x  + c1 t )  - $pl c l f ( x  - c, t )  - 

- if1 C l f ’ ( X  + c1 t )  + P1 C l f ’ ( 4 ,  

TI = Y(Y - 1)C,P1f (X) .  

These perturbations travel along the characteristics in region 1 to the 
first characteristic of the centred simple wave, where they supply boundary 
conditions for determining the perturbed flow in region 3. On x = c l t ,  
the first characteristic of the simple wave is 

B = 5(2c, t )  - +PI C l f ( %  t )  + Sf1 C l f l ( C 1  t ) ,  

s1.z = Y ( Y -  1)CWPl.fYclt). 

Application of these conditions and the solution for the non-isentropic 
perturbation of a centred simple wave gives 

F.M. 

-pi C i  rZe 1’ y”ef(cly) dydz. 
z=o y=0 

2 0  
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Consequently, A, B and S, are known throughout the simple wave. 
As the expressions are very complicated, let the values on the last 
characteristic of the simple wave be 

A = 51(t), B = i 2 ( t ) ,  S3.r = 5 3 ( t ) ,  

where tl, 5, and c3 are known functions. However, these conditions are 
not sufficient to determine the perturbed flow in region 5. 'This is clear, 
for it cannot be expected that data along one characteristic, but nothing 
on another curve, would yield a well-set problem. It is convenient to let 
zZ5 = tl(t) on x = Kt, the contact discontinuity, where, of course, tl(t) is 
not known at the present time. The perturbed flow in region 5 can now 
be easily found. Simple reasoning shows that Z5 is a constant multiple 
of f l ( t )  plus and a known function and, therefore, 

where v is a constant and r is a known function. 
As the pressure and velocity are continuous across the contact dis- 

continuity, the perturbations of these quantities are also continuous across 
this surface, so that 

on x = Kt. 
For region 2, the solution is easily found. This gives 6, and E2 and, 

from Appendix 111, all perturbed quantities in region 2 are easily determined. 
From Appendix 111, the values of the perturbed quantities in region 4 

may be found just behind the shock in terms of m. The analysis is simple 
though tedious, and simple reasoning shows that they have the following 
form : 

p5 = V f , ( t )  + r(t) 

I 4  = Sl ( t ) ,  F4 = V & ( t )  + lyt) 

P4 = R, + R, IT, p4 = R, + R~ FV, t4 = R, + R]" m, 7 
(10.1) i S4 = Rll + R12 @, 

A = R,, + R,, JJ', 
ti4 = R,, + R,, JQ, 
B = R17 + R,, JQ, 

where all the R's are known, and odd-numbered subscripts denote functions 
of t while even-numbered subscripts denote constants. 

Utilization of the solution for the non-isentropic perturbation of a 
constant state and the boundary conditions (10.1) gives 

I+ + R21[ w- u4 - c, 
x - (u, + C4)t 

A = Rl,[ 

x - (u4 + cp"] - [ x - u, t ]  
+ R,, q w - u , - c ,  +R," w - w-u, ' 

I+ R = R l9 [-I w-u, +R2,[ w-uu,+c, 
x -u4 t  x - (u4 - C4)t 

where all the R's are known. 
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Throughout the region 4, we have 

The continuity of P across the contact discontinuity gives an equation of 
the form 

and the continuity of z i  across the contact discontinuity gives 

Division of (10.2) by (10.3) serves to eliminate f l ( t ) ,  with the result 

where all the R's are known. has been found, f l ( t )  
immediately, and the solution is easily completed. This functional 
is discussed in Appendix 11. 

Once 

R,l(t) ,  

is given 
equation 

PART 111. TUBE OF SLOWLY VARYING CROSS-SECTION 
The flow in a long tube whose cross-section is made to undergo a small 

variation with x can be treated by a similar analysis. It is convenient to 
express the cross-section of the tube in the form E(x)  = E,, + 6 E,(x), 
where E, is the original uniform cross-sectional area and 6 is a small 
parameter. 

It will be assumed that the tube consists of two parts, one of uniform 
cross-section, and one of perturbed cross-section. A uniform shock, 
introduced in the tube where the cross-section is uniform, will travel along 
the tube and remain uniform until it reaches the transition section. The 
gas in front of the shock is assumed to be at rest, and the small effects due 
to the discontinuity in the slope of the tube at the transition section will 
be neglected. After the shock passes the transition section, it will be 
perturbed, and the flow behind the shock will necessarily be non-isentropic. 
The problem is to describe the flow behind the shock and to find the 
perturbed shock locus. The results are applied to several problems, and 
some comparisons are made with work by a previous author. 

11. DERIVATION OF EQUATIONS WHICH GOVERN THE FLOW 

Clearly, the Euler and energy equations are not affected by the cross- 
sectional perturbation, but the continuity equation contains an additional 

2 0 2  
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term. 'l'he mass, contained in an arbitrary volume r, may be written as 

M = j 7 p d r  = 1 pE(x)dx.  

The continuity equation, DM/Dt  = 0, implies that 

Consequently, the basic equations are 

X 

(PE), + (PEU), = 0. 

Uf + uu, + 2c,/(y - 1) = s, c2/c, y(y - l), 

s,+us, = 0. 
2Ec,/(r - 1) + ~Euc,.(~ - 1) + CEU, + cE, + UCE, = 0, 

A formal linearization in the neighbourhood of an originally isentropic 
flow gives 

+ u11 + 2% c ldr  - 1) + U l % r  +2CO,Cll(Y - 1) = c:slz/czlY(Y - 11, (1 1 . I>  

2 C d Y  - 1) + co % + 2% C l r h  - 1) + c1 uos + 2% coAr  - 1) + 
+ uo co G / E o  + ?cot ElIEdY - 1) + co uoz ElIEO + 

+ ~ U ~ C ~ ~ E ~ / I C O ( ~ -  1) = 0, (11.2) 

S l t  + ug S l Z  = 0. (11.3) 

It is thus clear that the cross-sectional perturbation merely introduces 
a non-homogeneous term into the basic perturbation equations which were 
previously derived, so that the mathematical results of the previous sections 
may be utilized, and the problem is reduced to the determination of a 
particular integral of (ll.l), (11.2) and (11.3). 

For the case of an initially uniform flow, (11.3) may be solved 
independently, and, utilizing the same procedure as employed in $2, 
the following equations are obtained : 

A, + (ug + co)AZ = - B u O  CO EJEo + kHo, 
B, + ( u g  - c ~ ) B ,  = - +uO CO El,/Eo - &Ho. 

The general solution in terms of three arbitrary functions is 

H ,  = 2xyx - ug t ) ,  

A = F [ x - ( u ~ + c ~ ) ~ ]  + c ~ ' ~ ( x - - u , t ) - ~ u , ~ ~ E i / E ~ ( ~ , + ~ ~ ) ,  (11.4) 
B = G[x-(~o-c,) t]  + c ~ ' x ( ~ - u , ~ ) - ~ u ~ ~ ~ E ~ / E ~ ( u , - c ~ ) .  (11.5) 

Consequently, there is a perturbation, due to the entropy variations, 
which travels along the particle paths, and this is measured by x ;  the 
perturbations measured by F travel along one family of characteristics 
with sonic velocity relative to the fluid, and the perturbations measured 
by G travel along the other family of Characteristics with sonic velocity 
relative to the fluid. 

Chester (1953) has considered the disturbance produced behind a 
plane shock of arbitrary strength travelling down a two-dimensional channel 
of non-uniform width, and the problem was linearized on the basis of small 
yariations of the width of the channel, The variations in width were qssumed 
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to take place within a finite length of the channel, and this region of transition 
separates two uniform portions each of infinite length but not necessarily 
equal widths. The pressure field behind the shock was built up from the 
known solution of the diffraction of a shock wave travelling along a wall 
with a corner (Lighthill 1948). I n  a later paper, Chester (1954) considered 
essentially the same problem, but a different approach was used and applied 
to a tube of arbitrary cross-section. 

Let the flow in front of the shock be given by u ~ ,  = 0, co, Po, po, the 
flow behind by u2, c2,  P,, p2, and the shock velocity by w .  Let v2 = u2 - w 
and M,, = w/co. The following relations are easily obtained: 

212 = 2w( 1 - M;'))/(y + l),  

12921 = 1242- w1 = w(y - 1 + 2M;Z)/(y + l), 

( y  + 1)P, = 2pp0[w2 + (1  - y)cF/2y] = P0[2yM;4 - y + 11, 

M1 = /'zI2//C2 = [ (y  - 1 + 2M" " / (2y  - ( y  - l)M,3]1/2, 

m = u2/c2 = 2( 1 - M,2)/Ml(y + 1).  

Chester restricted his treatment to the investigation of the average 
pressure and, for the case where the tube consists of two cylinders connected 
by a transition section, the following result was obtained : 

P2 = - K"(P2 - Po)El/Eo, 
K* = 2( 1 + m)-l( 1 + M; + 2M1)-1. 

'l'he parameter K" decreases monotonically with the shock strength, and 
0.5 Actually, it is clear that the disturbance depends 
only on the variations in the area of the tube and not on the actual shape 
of the cross-section, as will be seen shortly. 

It will now be shown that, using the purely one-dimensional analysis 
of this section, Chester's result can be obtained quite simply. Consider 
the general solution (11.4) and (11.5). The term in El is due directly to 
the changes in cross-section, and this disturbance is reflected at the shock 
and gives rise to the term involving G. From the way Chester has 
formulated the problem (i.e. with the shock coming from infinity, so to 
speak), the contribution given by F is not included, for there is no mechanism 
(e.g. a piston curve) for reflection upstream of the shock which could give 
rise to such a term. I n  other words, Chester's result should be obtainable 
from (11.4) and (11.5) by putting F = 0. The details are sketched below. 
If F = 0, it follows from (11.4) that 

K" > 0.394. 

From the shock perturbation tables given in Appendix 111, it is easily 
determined that 

Hence 
E2/c2(y - 1) - ;s2/c,,y(y - 1) = &P,/yP,. 

4,1c2 = - p2/yP2 - mEJ( 1 + m)Eo. ( 1  1.6) 
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As 

and, from relation IX of Appendix 111, 

then 

u,/c, = 2(M, - M,l)/(y + l), (y + l ) ~ 2 / c o  = 2(1 + M;2)Bo, 

P,/PZ = +a0 M0/(2yMi - y + l ) ,  

cz" Pzpo - ( 2 y M , - y + l ) [ 2 + ( y -  1)M(f] 

6, ( 1  + M,)(2yM,2 - y + 1)Pz  _ -  - 
CO 2Y(Y + 1)M,3 p2 

7 

Hence 2==-  M3Y + 11, 
C, C,/C, C, = d,/c, = ( 1  + x)P2 /2yM,2  M I  Pz. 

Pz( 1 + M: + 2M; Ml)/2Pz M,2 = - yMl mE,/( 1 + m)E,,. 
Also, from (11.6), 

Finally, since 
pz = (2YM; - (Y - W P 2  - P0)/2Y(% - 11, 

It is easily shown that the term in braces is equal to 2. Hence, the result 
is the same as that obtained by Chester. 

The analysis of the present paper is useful because it can be applied 
to a variety of problems. In  the next section, a problem where the 
perturbations are reflected on a piston curve is treated. The analysis could 
be applied to a problem where the tube is open at one end. In such a 
problem, reflection at a surface of constant pressure would be encountered. 

12. SLOWLY CONVERGING OR DIVERGING CROSS-SECTION 

For this problem, El(x) = Kx, where K > 0 for a diverging cross-section 
By a uniform compressive 

It is assumed that the 
and K < 0 for a converging cross-section. 
motion, a uniform shock is introduced at x = 0. 

I 
t 

Figure 7. 

piston is pushed continuously with velocity V ,  and the original shock 
velocity is w. Figure 7 is the (x,t)-representation of the flow. Region 0 
is a rest state, and the perturbed flow behind the shock is denoted by 2. 
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I he problem will be solved by expressing the perturbations z i 2 ,  E2 and f2 

in terms of W, at present unknown, and using the general solution ( $ 1 1 )  
to find A and B throughout region 2 in terms of W. From the assumptions 
of the problem, zi, = 0 on the piston path ; this gives a functional equation 
from which 5 can be easily determined. 

r 3  

The Prandtl relation, in perturbation form, gives 

z i 2  = 2K,W, E2 = K2(y- 1)W 
on the shock, with 

2K, = 2( 1 - 0) - u2/w = 2(y + l)- l(  1 + MC2), 
2 m 

+ 1 ( 1 -  M12). c,(y + 1 )  2wc2 y + 1 J,fl + - 
+--- - 2(w-u , )  24: 

K2 = 

Consequently 

A = (K,+k-,)W e K,W, B = (K,-K,)W K 4 5  
on the shock. 

By the same analysis as in part 11, 

w(u2 - w )  

on the shock. 

so that 

Throughout region 2 ,  
s2 = 2c, y(y - l)c;2 x ( x  - u2 t ) ,  

2c,y(y - l ) x ( x  - u2 t )  = K5 cZ"zE[(x - 24.2. t ) / ( w  - U J ] .  

By the use of the general solution and the boundary conditions, the 
solution for region 2 is 

A =  

B =  

+ { K 3 -  

x - (u2 - c2)t 242 c2 k*w +[ w - uz + c, 1 2E"(U, - C,) * 

As u - 0 on x = Vt, the following equation is obtained for the 
2 ,  

determination of 5 :  I+$[ c 2 t  ][ ' Z K 5  - K 4 ]  
w - u2 +c2 2c,y(y - 1 )  

= u2 6; K(w - U,) [ (W - u2)2 - C ; y E , l t .  
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It is easily seen that a linear function of t satisfies this equation, and the 
solution is 

The pressure perturbation behind the shock is, in terms of the parameters 
Mo, Ml and m, 

P2 = - K,(P2 - Po)& E;l,  

(y + 1)K6 = 2(y - 1 + 2 M 3  2w+ mM1(l - M,2) + (1 + M i 2 )  - 

+ d - l +  
(y  - 1 + 2Mr2) { 4( 1 - M:) - 

2Y (Y+ l)(l-MIP) 
Were K6 is a monotonically decreasing function of the shock strength; 
and, for y = 715, 0.259 < K6 ,< 0.608. A graph of this function is given 
in figure 8. 

PP 

Po 
- 1 2 3 4  5 6 7  

Figure 8. 

13. CONCLUSIONS 
In this work, several problems of flows with weak entropy changes 

have been considered and solved explicitly. Without going further into 
the details of the problems treated, we may note the type of functional 
equations to which the solutions of these problems lead. That is, the 
values of the function to be found appeared in the same relation for different 
values of the independent variable. 
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It is clear that in cases where an analytic solution cannot be found, the 
general equations are suitable for a numerical calculation developed step 
by step along the characteristics. This procedure would be necessary for 
the perturbation of a flow with a shock of constant intensity. 

It is also clear that the problems treated here are among the most simple 
non-isentropic flows that can be considered. Undoubtedly, an analogous 
theory could be developed for steady flow in two dimensions. However, 
it is not at all sure that analytic results as complete as the present ones 
could be obtained. Perturbations can also be considered which introduce 
a new coordinate, but the problem is then even more complex. Several 
particular cases where the perturbed flow is uniform have already been 
considered, but much important work remains to be done. 

The following problem, which has already been solved (Gundersen 
1954), may be noted. By the use of the method of characteristic coordinates, 
an analytic solution was obtained for the interaction, in an inviscid ideal 
gas with a constant ratio of specific heats of 513, of a centred rarefaction 
wave and a non-uniform shock of constant intensity, i.e. the entropy jump 
is constant all along the shock with the result that the flow is isentropic on 
both sides of the shock. This work shows that the analysis of this paper 
need not be restricted to the perturbation of uniform shocks. 

These studies are important because flows with shock waves play an 
increasingly important role in numerous technical problems, and, except 
for certain exceptional cases, such flows are not isentropic. 

The problem discussed in this paper was suggested by Professor Paul 
Germain and the research directed by him. The author wishes to express 
his sincere appreciation to Professor Germain for his valuable advice and 
his continuous and stimulating interest in the project. 

APPENDIX I 
The functional equation 

A f  (4 -t Bf(b4 = g(t)  

IBI > 14, PI > 14, 
will be considered, where A, B,  a and b are constants. Assume 

and put 
U / b  = (, A/B = K, 7 = bt, f (b t )  = F(T), g(T/b) = BG(T), 

f (&)  =f(btU/b) = F(c$T). 
Consequently, (A 1) may be written as 

K F ( ( T ) + F ( T )  = G(T), < 1, lKl < 1. 
Conversely, if G(7) is known, and if F(T)  satisfies (A4), i.e. if (A4) can be 
solved, ( A l )  can also be solved. 

Theorem: If G(T) is continuous in an interval I ( - N  < 7- < N ) ,  
which implies that G(7) is also bounded in I ,  and if F(T) is uniformly bounded 
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in a neighbourhood of T = 0, there exists one and only one solution of (A4) 
defined in I. F(T) is a continuous function in I. If G(T) is continuously 
differentiable in I ,  F(T)  is also continuously differentiable in I .  

Proof: If T E I ,  E%EI because 151 < 1. Then 

F(T) + K F(&) = G(T), 
F(&) + K F(S2T) = G(@, 

. . . . . . . . . . ,  
F(f%) -t K F(P+%) = G(.$'%). 

Consequently, 

F(7) + (-  1),Kn+lF(P+%) = G(T) + 2 ( -  l).KG(&) = g,(~). 
p = l  

Hence 

As F(T)  is to be uniformly bounded in a neighbourhood of T = 0, it is 
possible to find n large enough so that /F(.$"+'T)/ is bounded. Call this 
bound C. Thus 

Since JKj < 1, if such a solution F(T) exists, it must be the uniform limit 
of the sequence g,,(T) in I (uniform convergence). Conversely, if g,,(T) 
is a uniform sequence of functions in I, the limit is the unique solution 
of (A4). 

IF(T) -&(.)I = IRn+ll IF(P+'T)l. 

IF(T) -&(.)I < CIK"+lI. (A5) 

However, it is obvious that the series 

p a 0  

is uniformly convergent in I .  Hence the solution of (A4) is 
m 

p = o  
F(T) = 2 (- l).A.B-.-lg(ff"T/~""). 

Remarks : 1. If G(T) = T ~ ,  F(T)  = T"/( 1 + Kt'"), IZ 0. Thus, if G(T) 
n 

may be approximated by 2 dP+, F(T) may be approximated by 
P-1 

2 dp 4/( 1 + Kp). 
p - 1  

If G(T) has a Taylor expansion in I (i.e. it is an analytic function), F(T)  is 
an analytic function in I .  

2. If IKI = 1, it is necessary to assume G(0) = 0. To preserve unique- 
ness, it is necessary to assume f ( t )  is continuous near t = 0. 

3. If 151 = 1, there is no problem if 5 = 1, K + - 1 ; 

4. If E = -1, lK1 < 1, then 

F(T) = G(T)/( 1 + K). 

K F( - T )  + F(T)  = G(T), K F(T)  + F( - T) = G( - T ) ,  

F(T)( 1 - K2)  = G(T) + K G( - T) .  

5. If E = 1, IKI = 1, the problem is either impossible or indeterminate. 



Flow of a compressible fluid with weak entropy changes 5 79 

APPENDIX I1 
The functional equation 

f(t> + h f ( m t )  + K f ( 4  = g(t> (B 1) 
will be considered, where h, K ,  m and n are constants, and jml < 1, 
In1 < 1 ,  lh( + /KI < 1. 

Theorem : If f ( t )  is uniformly bounded in a neighbourhood of t = 0, 
and g ( t )  is continuous in an interval I (It1 <A) ,  there exists one and 
only one solution of ( B l )  defined in I. f ( t )  is a continuous function 
in I and, if g(t) is cantinuously differentiable in I ,  f ( t )  is also continuously 
differentiable in I. The solution of (B 1 )  is 

c a m  

p = u y = o  
f ( t )  = 2 2 ( - l)P+qhpKqg(mPn*t)(p + q) ! / p  ! p !, (B 2) 

where this series is uniformly convergent. 

and attempt a solution of ( B l )  of the form 
First, fornially consider the functions g(mPngt), where p ,  p = 0,1,2,3, ..., 

The series (B 3 )  is a solution of (B 1) if 

eo,, = 1, e,,, + %,, = 0, el,, + he,,, = 0, 
e,,, +he,-,,, + Kez,,q-, = 0. 

ep,u = ( - l ) ~ + % i p , Q h ~ K g .  Put 

'rhen 

and therefore 
dp,tJ = dp-l,Q + dp,q-l ,  $0 = ' ,  ',,I = '1," = > 

dp,Q = ( p  + q)  ! /P  ! 4' ' (B 5 )  
It is now necessary to show that (B2) is actually the solution of (B 1) 

L,+ = 2 ~ ( - l ) p + W k " l + ( m P n Q t ) ( p + q ) ! / p ! q ! ,  p + q  < Y. (B6) 

and that it is unique. Consider the operator L, which is defined by 

p = u q = o  

The application of this operator to (B 1) gives 

Since f is to be uniformly bounded in a neighbourhood of t = 0, it is 
possible to find Y large enough so that 

If(m%P+lt)I < M ,  
where M is a constant. Therefore 

j f (mp+kqt) l  < M ,  

If- L,gI < 2 2 i~lplW(p + 4 )  /P ! 4! * (B 7) 
P + q = r + l  

As I --- co, the right-hand side approaches zero and 
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Asg is uniformly bounded in I, say /g(t)l < N ,  ( t ~  < A, the series 

N[l+lhj+jKJ]-l = N 2 ~ ( - l ) ~ + ~ ~ h ~ ~ ~ ~ ~ ~ ( ~ + ~ ) ! / ~ ! ~ !  (B9) 

is a dominant series for (B8), and (B8) is uniformly convergent. It has 
been tacitly assumed that l h J + J K j  < 1. For other values of h and K,  
f must be analytically continued. This question will not be discussed here. 

Ifg(t) = tr, j ( t )  = tr(l + hmr + Knr)-l. Thus, ifg(t) may be approximated 

by 2 artr, f ( t )  may be approximated by 

p = o  q=o 

P 

r - 1  
P 

7=1 
2 b,  tr[1+ hm'+ Kn'1-l. 

If g ( t )  is an analytic function in I ,  f ( t )  is an analytic function in 1. 

APPENDIX 111. TABLE OF PERTURBATIONS 

From the equations which govern the flow, many relations between the 
perturbed quantities may be obtained. A few of these are tabulated below, 
where all perturbations will be denoted by a bar, e.g. El where the basic 
quantity is c,. 

- 
4 .= Y exp[(s, - s*)/c, lP~-l ,  p 1  = 2 P I  E l l C d Y  - 1 )  - P 1  " / C V ( Y  - 1). (1) 

8 = Y P , / P l ,  Y e  =, C 5 l +  2 5  P1 E l .  (II) 

c2-n1 w-I,] [- u2-u1 w-u, + ~ = 2(1- qCl E,. (VI) 
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I n  some problems, it is convenient to express all perturbed quantities 
in terms of one parameter, e.g. as in the problem of 5 4 where was used 
as the parameter. Another convenient parameter, which leads to a concise 
representation of the perturbed quantities, is M = iul/c. From relation 111' 
above, 

From (111'), 
2 Y ~ 1 / ( y  + 1) - 0 = [ - 0 + 2 y ~ 3 ( y  + q1-1, 

G I M 1 ( y  - 1 -2yM,2) = G 2 M 2 ( 2 y M ?  - y +  1). or (XI1 1 

From the equation of state, 

- ~ l ) / ~ W l  = (P2/~1>(PllP2>", 
or 

(XIII) 

From &I2 = v2/c2, 

= (u,/c2)[(52/u2) - ( f 2 / C 2 ) 1 ,  W V )  

5, = E 2 -  m, 5, = 6,- w. (XV) 
- 

For a particular shock problem, the basic flow (i.e. all terms without 
bars) and the perturbed flow (subscript 1 )  are assumed known. If the 
problem is to be solved in terms of al, equations (IX) to (XIII) yield 
P2, j2, E,, M2,  S2. From (XIV), C2 is obtained, and C2 follows from (XV). 
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